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Abstract
In the era of big data, decision-making in social networks may

introduce bias due to interconnected individuals. For instance, in

peer-to-peer loan platforms on the Web, considering an individ-

ual’s attributes along with those of their interconnected neighbors,

including sensitive attributes, is vital for loan approval or rejec-

tion downstream. Unfortunately, conventional fairness approaches

often assume independent individuals, overlooking the impact of

one person’s sensitive attribute on others’ decisions. To fill this

gap, we introduce "Interference-aware Fairness" (IAF) by defining

two forms of discrimination as Self-Fairness (SF) and Peer-Fairness

(PF), leveraging advances in interference analysis within causal

inference. Specifically, SF and PF causally capture and distinguish

discrimination stemming from an individual’s sensitive attributes

(with fixed neighbors’ sensitive attributes) and from neighbors’ sen-

sitive attributes (with fixed self’s sensitive attributes), separately.

Hence, a network-informed decision model is fair only when SF

and PF are satisfied simultaneously, as interventions in individuals’
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sensitive attributes or those of their peers both yield equivalent out-

comes. To achieve IAF, we develop a deep doubly robust framework

to estimate and regularize SF and PF metrics for decision models.

Extensive experiments on synthetic and real-world datasets validate

our proposed concepts and methods.
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1 Introduction
The widespread use of machine learning (ML) models raises con-

cerns about ethical and legal implications due to potential biases [2,

37]. For example, ML-based credit scoring in loan systems may

yield discriminatory results for individuals with similar financial

profiles but different races [19]. To ensure fairness, research has

developed various fairness metrics [4, 9, 11, 12, 14, 19, 36, 38, 40, 42].

Earlier work focused on statistical independence between ML deci-

sions and sensitive attributes [8, 11]. There has been much recent

interest in answering the fairness questions from the perspective
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of causality [19, 26, 30], aiming to achieve equity by examining

interventions on sensitive attributes, e.g., “How would the decision

changes if we intervened with racial attributes?”.

Previous fairness criteria, particularly those rooted in causality-

based fairnessmetrics, have often assumed individual independence,

i.e., one person’s sensitive attributes do not impact others’ decisions.

This assumption implies that discrimination against individuals,

such as the borrower in our P2P loan example, is solely influenced

by their features, such as credit status and the sensitive attribute of

living location
1
. However, in the era of big data, our living world

is interconnected and social relationships play a significant role in

decision-making models [7, 20, 31]. For instance, in contemporary

online lending platforms, such as peer-to-peer (P2P) loan systems

on the Web, decision-making increasingly relies on both an indi-

vidual’s attributes and those of their social network neighbors [20].

In essence, decisions made by many ML systems now incorporate

sensitive attributes not only from the individual but also from their

neighbors in the social network.

Consequently, when the effects of self-sensitive attributes (self-

effect) and neighbors’ sensitive attributes (peer-effect) intertwine,

a decision model that appears fair under conventional criteria may

exhibit unfairness. Keeping the P2P loan example in mind, a loan

decision model satisfying conventional fairness criteria [8, 10, 11,

14, 19, 39] entails that the overall correlation/causal effect from

sensitive attribute, i.e., location or race, to the loan decision vanishes.

However, a loan model unfair for minor-group individuals might

seem to be fair with a vanished effect from race to loan decision. The

core reason is that scores assigned by the decision model for minor-

group individuals will be enhanced by considering their social

connections with themajor-group neighbors.We term such kinds of

unfairness as interference-specific unfairness throughout our paper.
In general, interference-specific unfairness exists commonly across

many scenarios beyond loan systems. For instance, prestigious

colleges may admit applicants from the minor group (seemingly

fair) with lots of neighbors from the major group, while rejecting

applicants with similar academic qualifications from the minor

group with few neighbors from the major group (indeed unfair) [3].

In response to such discrimination specific to interference across

individuals, we advocate for the establishment of more robust

fairness metrics that account for the influence of social relation-

ships on decision-making. Building upon recent advancements in

interference-based causality [13, 22, 27], we introduce the concepts

of "self-fairness (SF)" and "peer-fairness (PF)" to causally evalu-

ate equity among individuals with similar self-sensitive attributes

and distinct neighbor-sensitive attributes, as well as equity among

individuals with dissimilar self-sensitive attributes and analogous

neighbor-sensitive attributes, respectively. Subsequently, the simul-

taneous satisfaction of SF and PF through model regularization can

mitigate interference-specific unfairness.

To the best of our knowledge, we are pioneering the formal

differentiation and mitigation of discrimination stemming from an

individual’s sensitive attributes versus those arising from peers’

sensitive attributes. We summarize our contributions in below:

1. We contribute the Interference-aware Fairness (IAF) metric to

capture such unfair decisions.

1
As discussed in the real-world case study by [20].

2. To characterize IAF, we introduce causal definitions for Self Fair-

ness (SF) and Peer Fairness (PF) aimed at capturing unfair deci-

sions induced by peer effects.

3. Inspired by networked causal inference [27], we devise a deep

doubly robust (DR) framework to regularize unfair decision mod-

els in the presence of interference.

4. Our experiments, conducted on one synthetic data and two real-

world datasets, yield the following key results (a) SF and PF

effectively capture unfair decisions stemming from peer effects,

and (b) our designed DR framework successfully eliminates this

interference-specific unfairness.

2 Preliminaries
2.1 Notations
We formalize definitions of fairness in the essence of interference

across decision subjects. Throughout this paper, uppercase let-

ters denote the Random variables, e.g., 𝑋 , and lowercase letters

denote their realizations, e.g., 𝑥 . Let {𝐴𝑖 , 𝑋𝑖 , 𝑌𝑖 }𝑛𝑖=1 ∼ 𝑃 be the

logged dataset with 𝑛 individuals sampled from the joint distri-

bution 𝑃 (𝐴,𝑋,𝑌 ), where 𝐴𝑖 , 𝑋𝑖 and 𝑌𝑖 are sensitive attributes, con-
textual features and outcome to be predicted for individual 𝑖 , respec-

tively. A decision model𝑀𝜃 (𝜃 is the parameter of𝑀𝜃 ) is learned on

{𝐴𝑖 , 𝑋𝑖 , 𝑌𝑖 }𝑛𝑖=1 with predictions 𝑌𝑖 for individual 𝑖 . We assume 𝐴 to

be binary throughout this paper, while our discussion framework

can be easily generalized to categorical sensitive attributes. We

present all causal notions using the language of potential outcome

framework [30], i.e., 𝑌 (𝑎) represents the potential decision if the

sensitive attribute 𝐴 were set to value 𝑎. Notably, (𝐴,𝑋,𝑌 ) is the
observational data and cannot be intervented arbitrarily, as𝑀𝜃 at-

tempts to fit 𝑃 (𝐴,𝑋,𝑌 ). Besides, [𝑛] represents the set {1, 2, · · · , 𝑛}
and −𝑖 represents all elements in [𝑛] except for 𝑖 .

2.2 Correlation-based Fairness
By accounting for the correlations between sensitive attribute𝐴 and

outcome 𝑌 , several popular metrics have been proposed to achieve

fairness in the correlation sense [8, 10, 11]. For instance, the Fairness

Through Unawareness (FTU) [10] principle proposes to overlook

the sensitive attribute 𝐴, while the Demographic Parity (DP) [8]

criteria enforces𝑀𝜃 to decisions 𝑌 independent from𝐴:𝐴 ⊥⊥ 𝑌 . Be-

sides, two important notions, i.e., Equality of Opportunity (EO) [11]

and individualized fairness (IF) [9], have generalized the DP metric

on some sub-populations/individuals. To be specific, EO requires

DP on individuals receiving positive decisions: 𝐴 ⊥⊥ 𝑌 | 𝑌 = 1,

while IF enforces individuals with similar contextual features to re-

ceive similar decisions: 𝐷 (𝑌𝑖 , 𝑌𝑗 ) ≤ 𝜖𝐷𝑋 (𝑋𝑖 , 𝑋 𝑗 ) (𝐷 is some metric

and 𝜖 is some pre-defined threshold).

2.3 Causality-based fairness
While correlation-based fairness notions promote numerous ap-

proaches with compelling simplicity [11, 23], they may suffer from

bias caused by confounders (explicit (𝑋 ) or latent factors). We re-

fer to extensive analysis on such phenomena to previous stud-

ies [19, 23]. With the aim of quantifying and migrating the causal

effect of𝐴 on𝑌 via controlling third factors, the causality-based fair-

ness approaches have emerged in recent years [14, 19, 25, 26, 39, 43].
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Figure 1: Counterexamples and causal graphs we illustrated in Section 4.2. In (b), we merge the node A and Y for the clarity.
In (c), direct (unfair) and indirect (fair) causal paths from 𝐴𝑖 to 𝑌𝑖 are colored in green, while the red dashed lines represent that
PSF do not consider causal effects across individuals. In (d), self and peer causal effects from 𝐴𝑖 to 𝑌𝑖 , 𝑌𝑗 are colored in blue.

The counterfactual parity and conditional counterfactual parity [25]

has described population-level causality-based fairness by elimi-

nating average and conditional treatment effect: 𝐸 [𝑌 (𝐴 = 1)] =

𝐸 [𝑌 (𝐴 = 0)] and 𝐸 [𝑌 (𝐴 = 1) | 𝑋 ] = 𝐸 [𝑌 (𝐴 = 0) | 𝑋 ]. The
principle fairness [14] and counterfactual equalized odds [24] have

developed causality-based fairness specific to some important sub-

populations. The unit-level causality-based fairness, i.e., the coun-

terfactual fairness [19], has been proposed based on the Structural

Causal Model (SCM) [29]: 𝑌𝑖 (𝐴𝑖 = 1) = 𝑌𝑖 (𝐴𝑖 = 0). The path-

specific causality-based fairness [4, 26, 39] has been developed to

distinguish fair and unfair causal paths from 𝐴 to the 𝑌 with dif-

ferent mediators. For instance, PSF requires that 𝐸 [𝑌 (𝐴 = 1, 𝐾 (𝐴 =

0))] = 𝐸 [𝑌 (𝐴 = 0, 𝐾 (𝐴 = 0))], where 𝐾 is the mediator lying in

the causal path from 𝐴 to 𝑌 .

2.4 Fairness on Graphs
Recent research has extensively examined fairness in graph data

across various tasks, such as node classification, link prediction,

and community detection, through graph representation learning

with Graph Neural Networks (GNNs) [1, 6, 7, 17, 28, 31]. Fairness

concepts originally designed for tabular data, including DP, EO, IF,

and sample perturbations, have been integrated into the context of

fair node embedding and classification [7]. Notably, prior work in

graph fairness has made significant progress, but none has explicitly

addressed or formalized discrimination arising from peer effects.

3 A Real-world Case Study: Unfair Judgment in
Peer-to-Peer Loan

Prior research has highlighted the potential for discrimination stem-

ming from peer effects when incorporating social relationships into

decision-making processes. As depicted in Fig.2, [20] constructed a

real-world social network using the Prosper Loans Network Dataset,

encompassing over 1,048,575 Peer-to-peer (P2P) loan data records.

Leveraging this data, our analysis addresses two key objectives (a)

the necessity of considering social relationships when designing

decision-making models, and (b) the identification of fairness con-

cerns arising from the specific modeling of social relationships. In

this case study, we designate the Location variable
2
as the sensi-

tive attribute. Therefore, the fairness inquiry centers on whether

the loan decision model exhibits bias against borrowers from less

favorable areas (see Appendix A for details on implementation.)

The first task is to design decision models to judge the individ-

ual’s social score based on their social connections, rating, and

status of corresponding loan records, etc. Meanwhile, the second

task is to design decision models to judge the risk of each loan

record based on features including the credit status, and loan rating

records of the lender and borrower. For the first task, we design and

compare two decision models, i.e., a Graph Neural Network (GNN)

model and a multi-layer MLP model. For the second task, we fol-

low [20] and compare the XGBoost classifiers trained with and

without social features [20]. This metric quantifies the proportion of

negative judgments on creditworthy individuals with connections

in unfavorable locations and positive judgments on individuals who

lack creditworthiness but have connections in favorable locations
3
.

In Fig. 2, we observe a significant degradation inmodel prediction

performance for both tasks in the absence of interference modeling.

However, this improved performance comes at the cost of a con-

siderable increase in Unfair Proportion. This suggests that the bias

introduced by neighboring relationships is concurrently incorpo-

rated into the learning models. Hence, our case study demonstrates

that interference across individuals is a double-edged sword, en-

hancing prediction performance while introducing discrimination

stemming from peer effects.

4 Interference-aware Fairness
4.1 Problem Setting
In the context of interference-aware fairness, we introduce a for-

mal problem. Consider a social network comprising 𝑛 individuals,

denoted as decision subjects, with an adjacency matrix 𝐺 ∈ R𝑛∗𝑛 .

2
A binary variable representing the location of each borrower.

3
We explicitly encode the feature "creditworthy" for each individual by its social score

𝑠𝑖 , i.e., the true label for the first task. 𝑠𝑖 = 2 refers to creditworthy individuals and

𝑠𝑖 = 0 refers to individuals who are not creditworthy. In similar, we explicitly encode

the feature "favorable" by the value of the variable "Location". When Location= 1, i.e.,

more low-risk neighbors than high-risk borrowers, the location is "favorable".
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Figure 2: In the case study of P2P loans on the Web, we present our findings and outcomes. Specifically, on the left-hand side,
’L’ and ’B’ denote the lender and borrower in a loan record, while on the right-hand side, we refer to ’GNN’ as a three-layer
Graph Neural Network, ’MLP’ as a three-layer fully connected network, ’Xgb:S’ as the XGB boost classifier incorporating social
features, and ’Xgb:nonS’ as the XGB boost classifier excluding social features.

Here, 𝐺𝑖 𝑗 = 1 signifies a causal relationship between individual

𝐴𝑖 and 𝑌𝑗 , as well as between 𝐴 𝑗 and 𝑌𝑖 . Additionally, connections

between individuals 𝑖 and 𝑗 imply causal effects from 𝑋𝑖 to 𝐴 𝑗 and

𝑌𝑗 , as well as from 𝑋 𝑗 to 𝐴𝑖 and 𝑌𝑖 . In summary, when individuals 𝑖

and 𝑗 are neighbors, their own covariates influence the sensitive

attribute and decision of the other party, and their sensitive at-

tribute also impacts the decision of the other party. See Fig. 1 (c) for

an illustrative example of this setting. Consequently, the potential

decision of individual 𝑖 can be expressed as𝑌 (𝐴𝑖 , 𝑋𝑖 , 𝐴−𝑖 , 𝑋−𝑖 ) with
𝐴𝑖 (𝑋𝑖 , 𝑋−𝑖 ). To address the data inefficiency challenge arising from

the exponential realizations of the high-dimensional treatment vec-

tor (𝐴𝑖 , 𝐴−𝑖 ), we commonly adopt the following assumptions in the

field of networked interference in prior work [22, 27].

Assumption 1 (Neighborhood interference). The potential
decision for 𝑖 is only decided by its neighbor’s sensitive attributes
with covariates: 𝑌 (𝐴𝑖 , 𝑋𝑖 , 𝐴−𝑖 , 𝑋−𝑖 ) = 𝑌 (𝐴𝑖 , 𝑋𝑖 , 𝐴N𝑖

, 𝑋N𝑖
), where

N𝑖 = { 𝑗 | 𝐺𝑖 𝑗 = 1, 𝑗 ≠ 𝑖, 𝑗 ∈ [𝑛]} represents the neighbors of
individual 𝑖 on the network. In similar, 𝐴𝑖 (𝑋𝑖 , 𝑋−𝑖 ) = 𝐴𝑖 (𝑋𝑖 , 𝑋N𝑖

).
The exposure mapping assumption is further applied to mitigate

the exponential combination of N𝑖 [22]:
Assumption 2 (Exposure Mapping). There exists Φ which maps

AN𝑖
to a dense vector Φ(AN𝑖

) for any 𝑖 ∈ [𝑛] such that for any
neighboring treatment vectors 𝐴1

N𝑖
and 𝐴2

N𝑖
, we have 𝑌 (𝑎,𝐴1

N𝑖
) =

𝑌 (𝑎,𝐴2

N𝑖
) if Φ(𝐴1

N𝑖
) = Φ(𝐴2

N𝑖
), where the notations 𝐴1

N𝑖
and 𝐴2

N𝑖

are realization values of 𝐴N𝑖
.

Notably, the above assumption states that we can use a function Φ
for summarizing the neighbor treatments from a high dimensional

vector 𝐴N𝑖
to a dense vector Φ(𝐴N𝑖

). We denote 0̃ in the exposure

set 𝐴̃ as the no-treatment regime ofN𝑖 , serving as the control group
for treatment effect without interference. Following prior work [21,

22, 27], we define 𝑔𝑋 as the summary function capturing the in-

fluence of neighboring covariates, i.e., 𝐴𝑖 = 𝑓𝐴 (𝑋𝑖 , 𝑔𝑋 (𝑋N𝑖
),𝑈𝐴

𝑖
),

where 𝑓𝐴 is an unspecified function, and 𝑈𝐴
𝑖

represents individ-

ual characteristics. Similarly, 𝑔𝐴 denotes the summary functions

for sensitive attributes, i.e., 𝑌𝑖 = 𝑓𝑌 (𝑋𝑖 , 𝑔𝑋 (𝑋N𝑖
), 𝐴𝑖 , 𝑔𝐴 (𝐴N𝑖

),𝑈𝑌
𝑖
),

where 𝑓𝑌 and𝑈𝑌
𝑖

are defined analogously. To ensure fairness in the

presence of interference, we introduce the concept of Interference-

Aware Fairness (IAF) to differentiate and mitigate discrimination

arising from sensitive attributes and network neighbors:

Definition 1. A decision model𝑀𝜃 satisfies Self-Fairness (SF),
i.e., eliminates the discrimination from self’s sensitive attribute, if

the population-level direct (self) effect of 𝐴𝑖 on 𝑌𝑖 vanishes:

1

𝑛

∑︁
𝑖∈[𝑛]

𝐸 [𝑌𝑖 (𝐴𝑖 = 1, 𝑎)] − 𝐸 [𝑌𝑖 (𝐴𝑖 = 0, 𝑎)] = 0, ∀𝑎 ∈ 𝐴̃. (1)

Meanwhile, 𝑀𝜃 satisfies Peer-Fairness (PF), i.e., eliminates the

discrimination from neighbor’s sensitive attribute, if the population-

level peer effect of 𝐴N𝑖
on 𝑌𝑖 vanishes:

1

𝑛

∑︁
𝑖∈[𝑛]

𝐸 [𝑌𝑖 (𝐴𝑖 = 𝑎, 𝑎)] − 𝐸 [𝑌𝑖 (𝐴𝑖 = 𝑎, 0̃)] = 0, ∀𝑎 ∈ {0, 1}. (2)

Remark. 𝑎 comes from Φ. By simultaneously satisfying SF and

PF through the enforcement of decision model 𝑀𝜃 , we say 𝑀𝜃
satisfies IAF. It is worth noting that conceptualizing SF and PF at the

individual lev (counterfactual) will produce much sharper fairness.

However, the computational challenges of deriving individual-level

IAF from observational data, stemming from the absence of an SCM

model, render this approach practically infeasible. Meanwhile, our

experiments empirically show that regularizing SF and PF already

leads to near-optimal performance. We defer the exploration of

individual-level IAF to future research (refer to the Conclusion for

details).
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Acronym Full Name Definition

DP Demographic Parity 𝐴 ⊥ 𝑌
FTU Fairness Through Unawareness Do not include 𝐴 to the prediction model

IF Individualized Fairness 𝐷

(
𝑌𝑖 , 𝑌𝑗

)
≤ 𝜖𝐷𝑋

(
𝑋𝑖 , 𝑋 𝑗

)
EO Equality of Opportunity 𝐴 ⊥ 𝑌 | 𝑌 = 1

CP Counterfactual Parity 𝐸 [𝑌 (𝐴 = 1) ] = 𝐸 [𝑌 (𝐴 = 0) ]
CCP Conditional Counterfactual Parity 𝐸 [𝑌 (𝐴 = 1) ] = 𝐸 [𝑌 (𝐴 = 0) | 𝑋 = 𝑥 ], ∀𝑥 ∈ X
CF Counterfactual Fairness 𝑌𝑖 (𝐴𝑖 = 1) = 𝑌𝑖 (𝐴𝑖 = 0) , ∀𝑖 ∈ [𝑛]
PSF Path-specific Fairness 𝐸 [𝑌 (𝐴,𝐾 (𝐴) ) ] = 𝐸

[
𝑌 (𝐴,𝐾 ′ (𝐴) )

]
, 𝐸 [𝑌 (𝐴,𝐾 (𝐴) ) ] = 𝐸

[
𝑌 (𝐴′, 𝐾 (𝐴) )

]
IACP Interference-aware Counterfactual Parity

1

𝑛

∑
𝑖∈ [𝑛] 𝐸

[
𝑌𝑖 (𝐴𝑖 = 1, 𝑎̃) − 𝑌 (𝐴𝑖 = 0, 0)

]
= 0, ∀𝑎̃ ∈ 𝐴̃

IACCP Interference-aware Conditional Counterfactual Parity
1

𝑛

∑
𝑖∈ [𝑛] 𝐸

[
𝑌𝑖 (𝐴𝑖 = 1, 𝑎̃) − 𝑌 (𝐴𝑖 = 0, 0) | 𝑋 = 𝑥

]
= 0, ∀𝑥 ∈ X, 𝑎̃ ∈ 𝐴̃

IACF Interference-aware Counterefactual Fairness 𝑌𝑖 (𝐴𝑖 = 1, 𝑎̃) = 𝑌 (𝐴𝑖 = 0, 0) , ∀𝑖 ∈ [𝑛], 𝑎̃ ∈ 𝐴̃
SF, PF Self-fairness, Peer-fairness Def. 1

Table 1: Summary of various fairness notions with their capabilities, including whether well-defined, whether can identify
discrimination stemmed from self-effect and peer effects, in our IAF setting.

4.2 Comparison to Other Fairness Notions
In our IAF framework, we assert that prior fairness concepts, such

as correlation-based, causality-based, and graph fairness, fall short

in attaining SF and PF.

Correlation-based Fairness We investigate the limitations of demo-

graphic parity (DP) [8], equal opportunity (EO) [11], and individual

fairness (IF) [9] in achieving statistical fairness (SF) and personal-

ized fairness (PF) through counterexamples. In the context of the

P2P loan case, we modify it by introducing a sensitive attribute,

the borrower’s race (𝐴𝑖 ), while keeping other factors constant. We

consider empty contextual features, i.e., 𝑋 = ∅, with the ability to

generalize to non-empty 𝑋 . In our scenario, two borrowers apply

for a loan, and the decision 𝑌1, 𝑌2 depends on both 𝐴1, 𝐴2. We dis-

tinguish between minor and major race groups denoted as 𝑎 and 𝑎′.
We set 𝑃 (𝐴2 = 𝑎

′) = 𝑃 (𝐴2 = 𝑎) = 0.5, 𝑃 (𝐴1 = 𝑎 | 𝐴2 = 𝑎
′) = 0.99,

and 𝑃 (𝐴1 = 𝑎 | 𝐴2 = 𝑎) = 0.01. We construct an unfair binary

decision model 𝑀𝜃 with 𝑃 (𝑌 = 1 | 𝐴1 = 𝑎,𝐴2 = 𝑎) = 0.1,

𝑃 (𝑌 = 1 | 𝐴1 = 𝑎′, 𝐴2 = 𝑎′) = 0.9, 𝑃 (𝑌 = 1 | 𝐴1 = 𝑎′, 𝐴2 = 𝑎) =
𝑃 (𝑌 = 1 | 𝐴1 = 𝑎,𝐴2 = 𝑎

′) = 0.5. Consequently, we calculate that

𝑃 (𝑌1 = 1 | 𝐴1 = 𝑎
′) = 0.5 ≈ 0.496 = 𝑃 (𝑌1 = 1 | 𝐴1 = 𝑎) and 𝑃 (𝑌2 =

1 | 𝐴2 = 𝑎
′) = 0.504 ≈ 0.505 = 𝑃 (𝑌2 = 1 | 𝐴2 = 𝑎) (see Appendix B

for details). Therefore, both population-level and individual-level

DP fail to identify unfairness in this setting. Similarly, EO, which is

a finer-grained version of DP, also cannot detect unfairness in the

presence of interference. In the context of the IF metric, consider

the loan system example in Fig.1(b) with 6 individuals: 4 in the

major group (𝑎′) and 2 in the minor group (𝑎). The loan decision

model initially exhibits unfairness, rejecting the minor group and

approving the major group with one neighbor. However, when an

applicant from the minor group has two neighbors from the major

group, decisions become positive. Upon utilizing IF for decision

analysis, all subjects (regardless of the same or different 𝐴) receive

identical decisions. This remains true even when incorporating

network structure as features through encoding techniques such

as social score in [20] or motifs in [41].

Causality-based Fairness Previous causality-based fairness

approaches, including CP, CCP, CF, and PSF, rely on the Stable

Unit Treatment Value Assumption (SUTVA) [15], which assumes

no interference between an individual’s sensitive attribute and

neighbors’ decisions. To facilitate a fair comparison, we extend CP,

CCP, and CF to address self-discrimination and peer discrimination

within our proposed IAF problem, demonstrating their limitations:

Definition 2. A decision model𝑀𝜃 satisfies Interference-aware CP

(IACP), Interference-aware CCP (IACCP) and Interference-aware

CF (IACF), if the following criteria are satisfied:
IACP :

1

𝑛

∑
𝑖∈[𝑛] 𝐸 [𝑌𝑖 (𝐴𝑖 = 1, 𝑎) − 𝑌 (𝐴𝑖 = 0, 0̃)] = 0 ∀𝑎 ∈ 𝐴̃.

IACCP :
1

𝑛

∑
𝑖∈[𝑛] 𝐸 [𝑌𝑖 (𝐴𝑖 = 1, 𝑎) − 𝑌 (𝐴𝑖 = 0, 0̃) | 𝑋 ] = 0 ∀𝑎 ∈ 𝐴̃.

IACF : 𝑌𝑖 (𝐴𝑖 = 1, 𝑎) = 𝑌 (𝐴𝑖 = 0, 0̃) ∀𝑖 ∈ [𝑛], 𝑎 ∈ 𝐴̃.

In light of the extended concepts mentioned earlier, it becomes

evident that IACP, IACCP, and IACF fail to distinguish between SF

and PF as defined in Def.1. When 𝑎 is held fixed in SF and 𝑎 = 0

in PF, we observe that 𝐼𝐴𝐶𝑃 = 𝑃𝐹 + 𝑆𝐹 , implying that a vanished

IACP, representing the complete absence of the combined effects of

𝐴𝑖 and 𝐴N𝑖
, can be decomposed into a negative PF (direct effect of

𝐴𝑖 ) and a positive SF (peer effect of 𝐴N𝑖
). Consequently, a decision

model deemed fair under IACPmay exhibit unfairness when viewed

through the lenses of SF and PF. Similarly, decisions considered

fair under IACCP and IACF may appear unfair from the SF and PF

perspectives. In contrast, a fair decision model adhering to SF and

PF criteria is guaranteed to satisfy IACP, as indicated by the decom-

position mentioned above. Finally, we compare PSF and our IAF in

Fig.1 (c) and (d). Specifically, PSF quantifies both direct and indirect

causal effects for the same individual via different causal pathways

from 𝐴𝑖 to 𝑌𝑖 , such as 𝐴𝑖 → 𝑌𝑖 and 𝐴𝑖 → 𝑀𝑖 → 𝑌𝑖 , where some

causal pathways are deemed fair while others are deemed unfair.

For example, a loan rejection directly caused by an individual’s

race is considered unfair, while a rejection indirectly caused by

inadequate education is considered fair. In contrast, our IAF focuses

on distinguishing and identifying unfair decisions resulting from

self-effect and peer-effects of sensitive attributes.

Graph Fairness. In our analysis, we find that graph fairness

methods, including DP, EO, IF, and graph representation pertur-

bations [7, 17, 28, 31], lack the capability to achieve IAF. These

methods (a) typically apply fairness regularization inherited from

tabular data directly to graph models and (b) fail to distinguish

between discrimination originating from an individual and their
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neighbors, leading to the same limitations we have discussed in the

context of correlation-based fairness comparisons.

Remark. We leave a summary of the boundary capabilities

of various fairness metric in Tab. 1. We observe the potential to

extend PSF’s scope to encompass a broader definition. This involves

analyzing the impact of variable 𝐴 through 𝑌 across various paths,

both at the feature and individual levels.

Remark.We also provide a summary of different fairness no-

tions and their boundary capabilities in our IAF problem in Tab. 1.

5 A Doubly Robust Debiasing Framework
To achieve IAF, we begin by estimating direct and peer effects

from historical data, following Def.1. We then regularize the ML

model𝑀𝜃 to mitigate bias, drawing inspiration from the DragonNet

paradigm [32]. We formulate a doubly robust (DR) framework,

named “IAF+DR”, aligning with the optimization objective and

influence curve of the average causal effect under interference [27].

Formally, we aim to constrain the causal effect of the joint variables

𝐴𝑖 and 𝐴N𝑖
on 𝑌 across the population:

𝜙 (𝑎∗, 𝑎̃∗ ) = 1

𝑛

∑︁
𝑖∈ [𝑛]

𝐸 [𝑌𝑖 (𝐴𝑖 = 𝑎
∗, 𝐴N𝑖

= 𝑎̃∗ ) ], (3)

where we use 𝑎∗, 𝑎∗ to highlight the interventional values of 𝐴𝑖
and 𝐴N𝑖

and distinguish from observational values. We adapt the

well-known overlap assumption and unconfounded assumption

into our problem:

Assumption 3 (Overlap). For all 𝑥 in the support of 𝑋 , for all
𝑖 ∈ [𝑛] and for all 𝑎 ∈ 𝐴̃, 𝑎 in the support of 𝐴, we have:

𝑃
(
𝐴𝑖 = 𝑎,𝐴N𝑖

= 𝑎 | 𝑔𝑋 (𝑥)
)
> 0

Assumption 4 (Unconfoundness). All the variables affecting
both the treatments and the potential outcome are observed:

𝑌𝑖 (𝐴𝑖 , 𝐴N𝑖
) ⊥⊥ 𝐴𝑖 , 𝐴N𝑖

| 𝑔𝑋 (𝑋 )

We then have the following identification result:

Theorem 1. The target estimand, i.e., 𝜙 (𝑎∗, 𝑎∗) for intervened
values 𝑎∗, 𝑎∗, can be identified as follows:

𝜙 (𝑎∗, 𝑎∗) = 1

𝑛

𝑛∑︁
𝑖=1

∫
x
𝐸 [𝑌𝑖 | 𝑎∗, 𝑎∗, 𝑔𝑋 (𝑥)]𝑝𝑥 (x)𝑑𝑥 .

Proof. We have the following derivation:

𝐸 [𝜙 (𝑎, 𝑎̃) ] = 1

𝑛

𝑛∑︁
𝑖=1

𝐸
[
𝑌𝑖 (𝑎, 𝑎̃)

]
=

1

𝑛

𝑛∑︁
𝑖=1

∫
x
𝐸
[
𝑌𝑖 (𝑎, 𝑎̃) | 𝑋 = 𝑥

]
𝑝𝑋 (𝑥 )

=
1

𝑛

𝑛∑︁
𝑖=1

∫
x
𝐸
[
𝑌𝑖 (𝑎, 𝑎̃) | 𝑎, 𝑎̃, 𝑋 = 𝑥

]
𝑝𝑋 (𝑥 )

=
1

𝑛

𝑛∑︁
𝑖=1

∫
x
𝐸
[
𝑌𝑖 | 𝑎, 𝑎̃, 𝑋 = 𝑥

]
𝑝𝑋 (𝑥 )

=
1

𝑛

𝑛∑︁
𝑖=1

∫
x
𝐸
[
𝑌𝑖 | 𝑎, 𝑎̃, 𝑔𝑋 (𝑋 )

]
𝑝𝑋 (x) .

□

We begin by parameterizing the model for regression estimation,

denoted as 𝐸 [𝑌𝑖 | 𝑎, 𝑎, 𝑔𝑋 (𝑥)], using a deep model, 𝑌𝑛𝑛 , which also

serves as the decision model. To model the aggregation of 𝑔𝑋 (𝑥)
from neighboring elements, we opt for a GNN model within 𝑌𝑛𝑛 .

Prior research [32] has demonstrated the benefit of targeted reg-

ularization for causal inference without interference [27, 34]. To

improve the robustness and finite-sample efficiency of estimating

𝜙 (𝑎, 𝑎), we incorporate targeted regularization with interference.

Specifically, we introduce a scoring head 𝐴𝑛𝑛 to the GNN repre-

sentation output for capturing the propensity score, denoted as

𝑃
(
𝐴𝑖 = 𝑎,𝐴N𝑖

= 𝑎 | 𝑔𝑋 (𝑥)
)
. We then apply targeted regularization

to ensure that the estimated 𝜙 and (𝐴𝑛𝑛, 𝑌𝑛𝑛) satisfy the estimation

equation, i.e., 𝜑 (𝑌,𝐴, 𝐴̃, 𝑋 ;𝑌𝑛𝑛, 𝐴𝑛𝑛, 𝜙), defined as follows:

𝑌𝑛𝑛 (𝑎∗, 𝑎̃∗, 𝑔𝑋 (𝑥 ) ) −𝜙+ 𝐴̂
𝑛𝑛 (𝑎∗, 𝑎̃∗ | 𝑔𝑋 (𝑥 ) )
𝐴̂𝑛𝑛 (𝑎, 𝑎̃ | 𝑔𝑋 (𝑥 ) )

[ ]𝑦𝑖 −𝑌𝑛𝑛 (𝑎, 𝑎̃, 𝑔𝑋 (𝑥 ) ) ],

(4)

By regulating that
1

𝑛

∑𝑛
𝑖=1 𝜑 (𝑌𝑖 , 𝐴𝑖 , 𝐴̃𝑖 , 𝑋𝑖 ;𝑌𝑛𝑛𝑖 , 𝐴𝑛𝑛

𝑖
, 𝜙𝑖 ) = 0, we de-

signed targeted-regularized outcome estimation as follows:

𝑌 𝑟𝑒𝑔 (𝑎∗, 𝑎̃∗, 𝑔𝑋 (𝑥 ) ) = 𝑌𝑛𝑛 (𝑎∗, 𝑎̃∗, 𝑔𝑋 (𝑥 ) ) + 𝜖 ∗ 𝐴̂
𝑛𝑛 (𝑎∗, 𝑎̃∗ | 𝑔𝑋 (𝑥 ) )
𝐴̂𝑛𝑛 (𝑎, 𝑎̃ | 𝑔𝑋 (𝑥 ) )

(5)

Hence, the regularization objective is formularized as

L𝑟𝑒𝑔 =
1

𝑛

𝑛∑︁
𝑖=1

∑︁
𝑎∗∈𝐴,𝑎̃∗∈𝐴̃

(𝑌𝑖 − 𝑌 𝑟𝑒𝑔𝑖
(𝑎∗𝑖 , 𝑎

∗
𝑖 , 𝑔𝑋 (𝑥𝑖 )))2

and the estimated 𝜙 as 𝜙𝑟𝑒𝑔 (𝑎∗, 𝑎∗) = 1

𝑛

∑𝑛
𝑖=1 𝑌

𝑟𝑒𝑔

𝑖
(𝑎∗, 𝑎∗, 𝑔𝑋 (𝑥)).

Based on the above identification of 𝜙 (𝑎∗, 𝑎∗), we are now capable

of designing fairness penalty loss, i.e., L𝑓 , to remove bias conveyed

in the decision model 𝑌𝑛𝑛 :

L𝑓 =
∑︁
𝑎∗∈𝐴

Var
𝑎̃∗∈𝐴̃ (𝜙

𝑟𝑒𝑔 (𝑎∗, 𝑎∗)) +
∑︁
𝑎̃∗∈𝐴̃

Var𝑎∗∈𝐴 (𝜙𝑟𝑒𝑔 (𝑎∗, 𝑎∗)),

(6)

where Var
𝑎̃∗∈𝐴̃ refers to the variance of 𝜙𝑟𝑒𝑔 (𝑎∗, 𝑎∗) with differ-

ent 𝑎. This objective can lead to the disappearance of SF and PF,

and attainment of IAF under optimal optimization conditions. Ad-

ditionally, two standard objectives are employed for optimizing

𝑌𝑛𝑛 and 𝐴𝑛𝑛 : L𝑌 = 1

𝑛

∑𝑛
𝑖=1 L(𝑌𝑖 , 𝑌𝑛𝑛𝑖 (𝑎∗

𝑖
, 𝑎∗
𝑖
, 𝑔𝑋 (𝑥𝑖 )))2 and L𝐴 =

1

𝑛

∑𝑛
𝑖=1 L(𝐴𝑖 , 𝐴𝑛𝑛 (𝑎, 𝑎 | 𝑔𝑋 (𝑥𝑖 ))) (L refers to the classification loss,

i.e., cross-entropy loss). To summarize, the overall objective of our

debiasing framework can be formulated as follows:

L𝑠𝑢𝑚 = L𝑌 + L𝐴 + 𝛼L𝑓 + 𝜖L𝑟𝑒𝑔,

where 𝛼 is the parameter to control the fairness penalty. One obser-

vation hints that minimizing targeted regularization term, e.g.,L𝑟𝑒𝑔 ,
force (𝜙𝑟𝑒𝑔, 𝐴𝑛𝑛, 𝑌 𝑟𝑒𝑔) to satisfy the estimating equation in (4):

0 = 𝜕𝜖 (L𝑠𝑢𝑚) |𝜖 = 𝜖
1

𝑛

𝑛∑︁
𝑖=1

𝜑 (𝑌𝑖 , 𝐴𝑖 , 𝐴̃𝑖 , 𝑋𝑖 ;𝑌 𝑟𝑒𝑔𝑖
, 𝐴𝑛𝑛𝑖 , 𝜙

𝑟𝑒𝑔

𝑖
) .

Remark. As our method is formulated using the semi-parametric

analysis, it naturally satisfies the doubly-robustness property. For

ease to understand, we summarize the training & inference proce-

dure as follows:

Step 1. Model training. Learn 𝑌𝑛𝑛 as the regression model,

𝑔𝑋 as the GNN model to capture the aggregation of neighbors’
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covariates, and 𝐴𝑛𝑛 as the propensity model by minimizing the

training loss:

𝐿reg =
1

𝑛

𝑛∑︁
𝑖=1

∑︁
𝑎∗∈𝐴,𝑎̃∗∈𝐴̃

(
𝑌𝑖 − 𝑌 reg

𝑖

(
𝑎∗𝑖 , 𝑎

∗
𝑖 , 𝑔𝑋 (𝑥𝑖 )

) )2
,

where

𝑌 𝑟𝑒𝑔
(
𝑎∗, 𝑎∗, 𝑔𝑋 (𝑥) | 𝑎, 𝑎

)
= 𝑌𝑛𝑛

(
𝑎∗, 𝑎∗, 𝑔𝑋 (𝑥)

)
+𝜖 𝐴

𝑛𝑛 (𝑎∗, 𝑎∗ | 𝑔𝑋 (𝑥))
𝐴𝑛𝑛 (𝑎, 𝑎 | 𝑔𝑋 (𝑥))

;

Step 2. Counterfactual outcomes inference. For testing sam-

ples

{(
𝑥𝑡𝑒
𝑖
, 𝑎𝑡𝑒
𝑖
, 𝑎𝑡𝑒
𝑖

)
| 𝑖 = 𝑛 + 1, . . . , 𝑛 +𝑚

}
, the potential outcome

𝑌 𝑡𝑒
(
𝑎∗, 𝑎∗, 𝑥𝑡𝑒

)
is estimated by:

𝑌 𝑡𝑒
(
𝑎∗, 𝑎∗, 𝑥𝑡𝑒

)
= 𝑌𝑛𝑛

(
𝑎∗, 𝑎∗, 𝑔𝑋

(
𝑥𝑡𝑒

) )
+𝜖

𝐴𝑛𝑛
(
𝑎∗, 𝑎∗ | 𝑔𝑋

(
𝑥𝑡𝑒

) )
𝐴𝑛𝑛 (𝑎𝑡𝑒 , 𝑎𝑡𝑒 | 𝑔𝑋 (𝑥𝑡𝑒 ))

Step 3. Calculate SF and PF. Then the SF for 𝐴̃ = 𝑎 can be

calculated as:

SF =
1

𝑚

𝑛+𝑚∑︁
𝑖=𝑛+1

𝑌 𝑡𝑒𝑖 (𝐴𝑖 = 1, 𝑎) − 1

𝑚

𝑛+𝑚∑︁
𝑖=𝑛+1

𝑌 𝑡𝑒𝑖 (𝐴𝑖 = 0, 𝑎) .

We note that the PF can be calculated from a similar argument.

6 Experiments
In this section, we conduct extensive experiments to answer the

following questions:

Q1. Does our PF and SF models effectively identify peer-induced

unfair decisions in reality?

Q2. Does our IAF+DR framework mitigate bias while preserving

high prediction accuracy?

Q3. Does debiasing with IAF impact other fairness metrics?

Q4.What is the impact of the fairness penalty on the trade-off

between prediction accuracy and fairness?

Q5. Can our IAF+DR framework accurately estimate self-effects

and peer-effects?

6.1 Dataset, Baselines, and Metric
Dataset. In this study, we perform experiments on three datasets:

one synthetic and two real-world datasets. The synthetic dataset,

created based on simulations from [5], models hiring decisions

for physically demanding jobs. It comprises one binary sensitive

attribute with three covariates and a binary outcome generated

using a predefined SCM. Additionally, we evaluate our methods on

two real-world datasets, namely, the NBA dataset and the Credit

Default Dataset, which include constructed social networkss [1, 7].

Baselines.We compare our IAF+DR frameworkwith the follow-

ing baselines including (a) two vanilla decision models on graphs: (1)

Graph Convolution Network (GCN) model [18] and (2) the Graph

Attention Network (GAT) model [35]; (b) Correlation-based fair
GNN methods: (3) CrossWalk [17] achieves fairness by biasing

random walks to cross group boundaries, (4) FairGNN [7] achieves

fairness by incorporating fairness regularization to ensure equi-

table treatment of different groups, (5) NIFTY [1] aims to improve

counterfactual fairness and stability of node representations by

sample perturbations; (6) InFo_GNN [16] adapts the individual

fairness by considering the interconnectedness of nodes on the

network, (7) GEAR [21] proposes graph augmentation by sample

perturbations. (c) Causality-based Fairness Methods: In our study, we
employ the GNNwith CP regularization, denoted as IACP (adapted

from Def. 2). We do not consider path-specific fairness or counter-

factual fairness methods, as they rely on prior causal knowledge

and are not well-suited for interference scenarios. Adapting these

methods to our IAF setting would require independent research.

Metric. In prediction, we assess testing accuracy (ACC) using

AUC for each method. Fairness is quantified following established

protocols [1, 7] through reporting Demographic Parity (DP) and

Equal Opportunity (EO) as: DP = |𝑃 (𝑌 = 1 | 𝐴 = 1) −𝑃 (𝑌 = 1 | 𝐴 =

0) | and EO = |𝑃 (𝑌 = 1 | 𝑌 = 1, 𝐴 = 1) − 𝑃 (𝑌 = 1 | 𝑌 = 1, 𝐴 = 0) |.
Additionally, we estimate the proposed SF and PF metrics using

IAF+DR on each dataset by reporting the direct effect and peer effect

defined in Assumption. 1. However, recognizing that SF and PF lack

ground truth in real-world data, we introduce a complementary

metric for other baselines to ensure a fair comparison.We extend the

concept of "unfair proportion" used in our case study by employing

matching to mitigate confounding bias from covariates. We term

this metric "Interference-aware Unfairness from Neighbors" (IUFN)

as the quantity measuring the extent of SF and PF. To be spcific,

we first define the variable to reflect the neighboring effect, i.e., 𝑁 .

We let 𝑁𝑖 = 1 if more than half of the individual’s neighbors have

positive sensitive attributes, and 𝑁𝑖 = 0 otherwise. Supposing that

the test samples are {(𝑋𝑖 , 𝑌𝑖 , 𝑁𝑖 , 𝐴𝑖 )}𝑛𝑖=1, we then define the overall

metric as the quantitymeasuring the extent of the unfairness arising

from interference in the network as follows:

IUFN =
1
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where 𝐵𝑙𝑚𝑘 = {𝑖 ∈ [𝑛] | 𝐴𝑖 = 𝑙, 𝑁𝑖 =𝑚,𝑌𝑖 = 𝑘}, 1 is the indicator
function, and 𝐷 (𝑋𝑖 , 𝑋 𝑗 ) is the L2 distance between 𝑋𝑖 and 𝑋 𝑗 , and
the first term is the proportion of units whose outcome would

change from 0 to 1, if we keep 𝑁𝑖 = 0 the same but change 𝐴𝑖 from

0 to 1. The rest terms follow a similar argument. We refer to such

metric as “Interference-aware Unfairness from Neighbors” (IUFN),
as IUFN is similar to the matching method [33] to account for causal

peer effects.

Implementations. Our approach, IAF+DR, utilizes a 3-layer

GCN as its core. Specifically, we employ GCN as the embedding

model to capture interference across individuals with respect to

covariates 𝑋 . We assume a prior knowledge of the neighborhood

exposure mapping, denoted as 𝐴N𝑖
∈ R |N𝑖 |

, which transforms into

𝐴̃ ∈ R. Notably, while this assumption may seem restrictive for

general tasks such as estimating causal effects with interference,

we argue that it is justifiable for fairness-related tasks. In fairness

tasks, historical data typically consists of past decision records or

decisions made by previous decision-makers. It is reasonable for the

current decision maker, who is training the model, to possess some

prior knowledge of past decision-making rules. Therefore, following

established protocols in causal inference [27, 34], we define the
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Table 2: Comparisons of our proposed IAF+DR with the baselines on ACC, AUC, DP, EO, and IUFN. All experiments are repeated
and averaged with 5 independent random seeds. The best performance is marked in bold.

Dataset Metrics GCN GAT CrossWalk FairGNN NIFTY InFoRM_GNN Gear IACP IAF+DR

Synthetic

ACC (%) 70.1±0.2 71.3±0.2 65.5±0.6 69.6±0.3 65.3±0.3 69.1±0.2 74.5±0.1 71.1±0.2 73.2±0.1
AUC (%) 62.7±0.2 65.8±0.1 61.7±0.3 60.6±0.2 50.0±0.4 69.1±0.1 72.5±0.1 68.0±0.1 73.1±0.2

DP 0.06±0.03 0.06±0.01 0.04±0.01 0.05±0.01 0.03±0.01 3.68±0.4 0.94±0.1 0.16±0.03 0.08±0.02
EO 0.05±0.02 0.05±0.01 0.06±0.01 0.03±0.01 0.03±0.02 1.11±0.03 0.95±0.08 0.13±0.03 0.09±0.02

IUFN (%) 17.5±0.3 19.6±0.4 16.3±0.6 18.3±0.6 18.5±0.2 19.5±0.3 18.5±0.4 18.0±0.2 0.5±0.2

NBA

ACC (%) 65.9±0.2 66.8±0.1 46.8±0.4 72.3±0.3 56.3±0.6 68.1±0.5 68.2±0.4 70.1±0.2 72.3±0.1
AUC (%) 65.9±0.2 67.2±0.1 46.5±0.6 72.3±0.4 56.3±0.6 68.8±0.4 65.9±0.3 70.1±0.3 71.4±0.2

DP 0.31±0.06 0.41±0.10 10.71±1.25 0.14±0.06 0.04±0.01 2.97±0.41 0.19±0.08 0.06±0.03 0.05±0.02
EO 0.26±0.05 0.31±0.14 28.69±1.68 0.22±0.07 0.13±0.03 1.20±0.32 0.21±0.11 0.26±0.03 0.03±0.01

IUFN (%) 16.60±0.2 22.20±0.4 21.1±0.3 11.1±0.3 17.1±0.4 12.2±0.2 18.8±0.2 10.0±0.1 3.3±0.1

Credit

ACC (%) 69.6±0.2 70.4±0.1 72.7±0.6 66.8±0.4 67.6±0.3 69.3±0.1 66.2±0.2 68.7±0.2 70.9±0.2
AUC (%) 64.7±0.2 66.2±0.1 54.3±0.5 63.1±0.3 64.2±0.4 68.1±0.1 65.4±0.3 67.5±0.2 67.9±0.2

DP 0.13±0.01 0.11±0.02 0.03±0.01 0.32±0.10 0.19±0.03 1.49±0.69 0.11±0.01 0.06±0.03 0.05±0.01
EO 0.12±0.02 0.12±0.04 0.03±0.02 0.30±0.11 0.19±0.02 6.35±1.05 0.11±0.06 0.03±0.02 0.03±0.01

IUFN (%) 5.8±0.2 6.7±0.2 3.6±0.7 4.0±0.6 4.0±0.7 3.8±0.1 4.6±0.2 5.2±0.2 0.8±0.2

neighborhood exposure mapping from 𝐴N𝑖
to 𝐴̃ as binary-valued:

𝐴̃ = 1 when half of 𝐴N𝑖
is positive, and 𝐴̃ = 0 otherwise (see

Appendix D.2 for details on baselines).

6.2 Performance Comparison
SF and PF captures unfair decisions raised from peer ef-
fects (Q1). In Fig. 3a, 3b, and 3c, we present the IFUN metric on

synthetic data and two real-world datasets prior to applying our

IAF+DR debiasingmethod. As previously indicated, the IFUNmetric

estimates SF and PF by cross-referencing diverse groups of individ-

uals. Statistical findings regarding IFUN, particularly with NBA and

credit data, reveal that real-world data often exhibits bias attribut-

able to self-effect or peer effects of sensitive attributes. For instance,

over 20% of NBA data records exhibit nationality-based discrimina-

tion originating from either an individual’s own nationality or that

of their neighbors. This reaffirms our stance: decision-making in an

interconnected world is susceptible to bias stemming from self or

neighbor-related sensitive attributes, emphasizing the importance

of identifying and mitigating these forms of discrimination.

Our IAF+DR migrates unfair decisions while maintains pre-
diction performance (Q2). In Table 2, we present the mean and

standard deviations of metrics across baseline models for three

datasets. Our observations are as follows:

• Previous debiasing approaches, including CrossWalk, FairGNN,

NIFTY, InFoRM_GNN, and Gear, achieve satisfactory prediction

performance and reduce bias on standard fairness metrics like DP

and EO. However, their performance on the interference-fairness

metric (IUFN) indicates that they still retain discrimination stem-

ming from neighboring relationships. Notably, the IUFN of Cross-

Walk and Gear exceeds that of GCN by nearly 20% on the NBA

dataset.

• Our compared baseline, IACP, falls short inmitigating interference-

aware discrimination across all datasets. These results confirm

our theoretical analysis in Section 4.2, which asserts that the van-

ished total effect cannot be assumed to eliminate both self-effect

and peer effects.

• In contrast, our proposed IAF+DR method effectively reduces the

IUFNmetric across all datasets when compared to other baselines,

while maintaining competitive prediction accuracy.

Debias on SF and PF will not conflict with conventional
fairnessmetric (Q3).As depicted in Table 2, our IAF+DR approach

effectively mitigates bias in IUFN while maintaining low bias in DP

and DP across various datasets. These results support our decompo-

sition, TF=SF+PF, where DP and EO represent correlated versions

of TF for the overall population and specific sub-populations. We

contend that addressing bias in SF and PF aligns with established

fairness criteria.

6.3 In-depth Analysis
Impact of fairness penalty to prediction and fairness (Q4). In
Fig.4, we observe that as the penalty parameter (𝛼) increases, the

test accuracy of our IAF+DR stabilizes in the range [0.0, 1.5] while
the IUFN metric sharply declines for 𝛼 > 1.25. As 𝛼 approaches 2.0,

both ACC and IUFN reach and maintain lower values. This phenom-

enon highlights the successful debiasing capability of our proposed

IAF+DR while maintaining high prediction accuracy within the

fairness penalty range of 𝛼 ∈ [1, 1.5]. It’s worth noting that the re-

duction in prediction performance with increasing fairness penalty

is a common occurrence due to historical decision data bias, as

discussed in Q1. The fairness task seeks to strike a balance between

acceptable prediction accuracy and minimizing decision bias.

Targeted regularization is crucial for estimations of SF
and PF (Q5). We evaluated SF and PF estimation with and without

our targeted regularization term L𝑟𝑒𝑔 (see Fig. 3d). Specifically,

"without L𝑟𝑒𝑔" denotes the optimization of only L𝑌 and L𝐴, with
decision outcomes derived from 𝑌𝑛𝑛 rather than 𝑌 𝑟𝑒𝑔 Since only

synthetic data possesses ground truth for SF and PF, measuring

estimation error on NBA and Credit is infeasible, necessitating the

introduction of the IUFN metric. Notably, the absence of L𝑟𝑒𝑔 (left
bars) results in a significant increase in estimation error compared

to its presence (right bars).
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(a) Debiasing on Synthetic (b) Debiasing on NBA (c) Debiasing on Credit (d) Estimation on Synthetic

Figure 3: Results on: (a,b,c): Debiasing performance of SF and PF across datasets; (d) Estimation performance on SF and PF for
synthetic data. All experiments are repeated and averaged with 5 independent random seeds.

(a) Trade-off on NBA Data (b) Trade-off on Credit Data

Figure 4: Trade-off between fairness and prediction accuracy
on NBA and Credit data by tuning the fairness penalty 𝛼
ranging in [0.0, 0.01, 0.02, . . . , 2.00].

(a) AUC (b) IUFN

Figure 5: Impact of substitution on the backbone across three
datasets. All experiments are repeated and averaged with 5
independent random seeds.

Impact of different backbones.Questions may arise regarding

the criticality of this choice and the adaptability of our proposed

IAF+DR framework to various backbones. To address these con-

cerns, we present a comparative analysis of AUC and IUFN results

for our IAF+DR model across three datasets using both GCN and

GAT as backbones (see Fig. 5). Our results demonstrate that the

choice of backbone, whether GCN or GAT, does not significantly

impact the prediction performance or debiasing capabilities of our

IAF+DR framework.

Impact of parameter 𝜖. In Fig.6, we observe that as 𝜖 increases,

the debias capability of our IAF+DR, i.e., IUFN, and the estimation

error decreases sharply. When 𝜖 ≥ 1, all metrics are stabilized. Such

phenomenon shows that the DR regularization effectively estimates

SF and PF, and efficiently migrates bias.

7 Conclusion
In this paper, we introduce Interference-Aware Fairness (IAF), a

novel concept addressing discrimination within interconnected

Figure 6: Impact of the parameter for our DR framework. i.e.,
𝜖, on estimation and fairness. Results are reported by tuning
𝜖 ranging in [0.0, 0.01, 0.02, . . . , 2.00].

individuals on social networks. We establish that achieving IAF

is tantamount to achieving two proposed fairness metrics: Self-

Fairness (SF) and Peer-Fairness (PF). Consequently, we present a

doubly robust framework for end-to-end estimation and mitigation

of SF and PF in model decisions.

We propose several avenues for future research. Firstly, an exten-

sion of IAF to individual-level fairness, specifically addressing coun-

terfactual causal inference, warrants attention. While individual-

level IAF offers sharper fairness compared to population-level IAF,

its identification in the context of SF and PF (individual-level) re-

mains an open challenge. An alternative approach gaining popular-

ity involves establishing a computationally feasible upper bound

for SF and PF based on observational data.
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A Details on Case Study

The Prosper dataset contains 1,048,575 loan records that occurred

from November 2005 to September 2011. Each record contains

nine features, including the Lender ID, Borrower ID, Timestamp,

Amount, Status (a binary variable representing the risk of each bor-

rower), Lender rate, Borrower rate, and the Rating. We refer readers

to [20] for a more detailed introduction to each feature. The social

network is naturally built for each individual by adding undirected

edges among each borrower and lender [20]. However, we only

concerned with the borrower network for individual judgment task,

i.e., the network consists of individuals who has become a borrower

more than once.

The first task, i.e. the individual social score judgment task, is

performed as a prediction task on the borrower network, where

the decision outcome is the social score for each borrower. In our

case study, such variable is interpreted as the “Location” for each

borrower. Of course, a loan decision should be discriminative on

the locations of borrowers. Considering the social network built

by loan relationships, this can be regarded as a node classification

task. Especially, the original social score is set as follows:

𝑠𝑖 =
1

1 +
(
𝜆

1−𝜆

)𝑔𝑖 ( 𝜆𝑝+(1−𝜆)
𝜆+(1−𝜆)𝑝

)𝐿𝑖 ( 𝜆+(1−𝜆)𝑝
𝜆𝑝+(1−𝜆)

)𝐻𝑖
, (7)

where 𝐻𝑖 and 𝐿𝑖 account for the number of high-risk and low-

risk neighboring borrowers, and 𝑔𝑖 = I(𝐻𝑖 > 𝐿𝑖 ). We set hyper-

parameter 𝜆 = 0.46 and 𝑝 = 0.5 following original implementations

in [20]. Based on the value of 𝑠𝑖 ∈ [0, 1], we create discrete labels in
[0, 1, 2] by setting 𝑠𝑖 falling in [0.0, 0.33), [0.33, 0.66), and [0.66, 1.0],
respectively. We then construct two models, i.e., one GNN and one

MLP, for prediction
4
. The GNN model contains three Graph Con-

volutional Layers (GCL) with relu activation functions. The MLP

model contains three fully connected layers with relu activation

functions. All the latent representations are set to 64 neurons. We

optimize both GNN and MLP using the Adam optimizer with an

initial learning rate 0.01 and weight-decay as 5𝑒 − 4. Both the accu-

racy and unfair proportions metric are reported on the testing data,

where we split the whole data in the ratio 8 : 2.

The second task, i.e. the loan risk judgment task, is performed as

a prediction task on the overall loan records, where the decision out-

come is the loan status, i.e., the risk of each loan. Following [20], we

use the XGBoost classifier in Sklearn https://scikit-learn.org/stable/

to perform prediction. We here set the 𝑠𝑖 into binary variables,

where 𝑠𝑖 < 0.5 corresponds to label 0 and 𝑠𝑖 >= 0.5 corresponds

to label 1. To test whether the accuracy and unfair proportion will

change with and without modeling the network structure, we con-

struct two XGBoost predictors with and without the social score

as features, i.e., the XGB:S and XGB:non-S. Notably, we interpret

the social feature here as a signal of the living/working location

of each borrower, as the calculation of 𝑠𝑖 relies on 𝑠𝑖 ’s neighbors.

Both the accuracy and unfair proportions metric are reported on

the testing data, where we split the whole data in the ratio 8 : 2.

The unfair proportion we reported in the case study roughly

characterizes interference-specific unfairness, which reports the

4
We note that all GNN-related models are constructed by the Pytorch-geometric

package in https://pytorch-geometric.readthedocs.io/en/latest/

proportion of individuals who receive unfair decisions caused by

their neighboring relationships. For the first task, individuals re-

ported by unfair proportion can be divided into two types: (1)

individuals with low observed signals (0) and powerful connec-

tions (ground truth of social score 𝑠 == 2) receive negative credit

judgment (predicted 𝑠 == 0); (2) individuals with high observed sig-

nals (1) and weak connections (ground truth of social score 𝑠 == 0)

receives negative credit judgment (predicted 𝑠 == 2). Similarly,

for the second task, the unfair proportion accounts for two types

of samples: (1) loan record with low loan status (ground truth of

low-risk borrower) and powerful connections (social score of the

borrower 𝑠 > 0.9) receive negative evaluation (high risk); (2) loan

record with high loan status (ground truth of high-risk borrower)

and weak connections (social score of the borrower 𝑠 < 0.1) receive

positive evaluation (low risk).

B Details on Comparison between our IAF and
Conventional Fairness Notions

We first detail the constructed counterexample to distinguish our

IAF from DP. To be more intuitive, we present the unfair decision

model, i.e., 𝑌 , as follows:

𝐴1 𝐴2 𝑃 (𝑌 = 1 | 𝐴1, 𝐴2)
𝑎 𝑎 0.1

𝑎′ 𝑎′ 0.9

𝑎 𝑎′ 0.5

𝑎′ 𝑎 0.5

(8)

, together with 𝑃 (𝐴1 = 𝑎 | 𝐴2 = 𝑎
′) = 0.99, 𝑃 (𝐴1 = 𝑎 | 𝐴2 = 𝑎) =

0.01 and 𝑃 (𝐴2 = 𝑎
′) = 0.5 = 𝑃 (𝐴2 = 𝑎), then we first derive the

DP for individual 2 as follows:

𝑃

(
𝑌2 = 1 | 𝐴2 = 𝑎

′
)

=
∑︁

𝑎1∈{𝑎,𝑎}
𝑃

(
𝑌2 = 1 | 𝐴1 = 𝑎1, 𝐴2 = 𝑎

′
)
𝑃
(
𝐴1 = 𝑎1 | 𝐴2 = 𝑎

′) = 0.5

𝑃

(
𝑌2 = 1 | 𝐴2 = 𝑎

)
=

∑︁
𝑎1∈{𝑎,𝑎}

𝑃

(
𝑌2 = 1 | 𝐴1 = 𝑎1, 𝐴2 = 𝑎

)
𝑃 (𝐴1 = 𝑎1 | 𝐴2 = 𝑎) = 0.496.

We then derive the posterior probabilities as follows:

𝑃
(
𝐴1 = 𝑎

′)
=

∑︁
𝑎2∈{𝑎,𝑎}

𝑃
(
𝐴1 = 𝑎

′ | 𝐴2 = 𝑎2
)
𝑃 (𝐴2 = 𝑎2 ) = 0.5

𝑃 (𝐴1 = 𝑎)

=
∑︁

𝑎2∈{𝑎,𝑎}
𝑃 (𝐴1 = 𝑎 | 𝐴2 = 𝑎2 ) 𝑃 (𝐴2 = 𝑎2 ) = 0.5,

and we have:

𝑃
(
𝐴2 = 𝑎 | 𝐴1 = 𝑎

′) = 𝑃 (𝐴1 = 𝑎
′ | 𝐴2 = 𝑎) 𝑃 (𝐴2 = 𝑎)
𝑃 (𝐴1 = 𝑎

′ ) = 0.99

𝑃 (𝐴2 = 𝑎 | 𝐴1 = 𝑎) =
𝑃 (𝐴1 = 𝑎 | 𝐴2 = 𝑎) 𝑃 (𝐴2 = 𝑎)

𝑃 (𝐴1 = 𝑎)
= 0.01.

Hence, we derive similar results for individual 2 as follows:

𝑃

(
𝑌1 = 1 | 𝐴1 = 𝑎

′
)
= 0.504

𝑃

(
𝑌1 = 1 | 𝐴1 = 𝑎

)
= 0.505
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Algorithm 1 Training procedure of Our DR Framework

1: Input The dataset D = {𝑋𝑖 , 𝐴𝑖 , 𝑌𝑖 }𝑛𝑖=1 with the adjacent ma-

trix 𝐺 , the GNN-based feature encoder 𝑉 , the neighborhood

exposure mapping Φ, the hyper-parameter 𝜖 .

2: for itr = 1 to I do
3: Embedding covariates 𝑋 by EmbX = 𝑉 (𝑋,𝐺);
4: Computing the neighbor exposure mapping for each node

as 𝐴̃ = Φ(𝐴,𝐺);
5: Compute (observed) hashed value 𝐴𝑠𝑢𝑚 = Φ(𝐴, 𝐴̃);
6: Compute the prediction head 𝑌𝑛𝑛 (𝐸𝑚𝑏𝑋 , 𝐴𝑠𝑢𝑚);
7: Compute the score head 𝐴𝑛𝑛 (𝐴𝑠𝑢𝑚 | 𝐸𝑚𝑏𝑋 );
8: L𝑟𝑒𝑔 = 0;

9: for All possible values (𝑎∗, 𝑎∗) in 𝐴 × 𝐴̃: do
10: Compute hashed value 𝐴∗,𝑠𝑢𝑚 = Φ(𝑎∗, 𝑎∗);
11: Compute 𝑌 𝑟𝑒𝑔 (𝐴∗,𝑠𝑢𝑚, 𝐸𝑚𝑏𝑋 );
12: Compute 𝐴𝑛𝑛 (𝐴∗,𝑠𝑢𝑚 | 𝐸𝑚𝑏𝑋 );
13: Compute 𝑌 𝑟𝑒𝑔 (𝐴∗,𝑠𝑢𝑚, 𝐸𝑚𝑏𝑋 ) based on above terms;

14: Accumulate L𝑟𝑒𝑔 ;
15: end for
16: for All possible values (𝑎∗, 𝑎∗) in 𝐴 × 𝐴̃: do
17: Compute 𝜙𝑟𝑒𝑔 (𝑎∗, 𝑎∗);
18: end for
19: Compute L𝑓 based on {𝜙𝑟𝑒𝑔 (𝑎∗, 𝑎∗)}

𝑎∗∈𝐴,𝑎̃∗∈𝐴̃;

20: Compute L𝑌 = 1

𝑛

∑𝑛
𝑖=1 L(𝑌𝑖 , 𝑌𝑛𝑛𝑖 (𝐴𝑠𝑢𝑚, 𝑔𝑋 (𝑥𝑖 )))2;

21: Compute L𝐴 = 1

𝑛

∑𝑛
𝑖=1 L(𝐴𝑖 , 𝐴𝑛𝑛 (𝐴𝑠𝑢𝑚 | 𝑔𝑋 (𝑥𝑖 )));

22: Update overall objective L𝑠𝑢𝑚 ;

23: end for
24: Output Using 𝑌𝑛𝑛 as the decision model.

C Algorithm Procedure
We detail the procedure of our proposed IAF+DR in Alg. 1.

D Experimental Details
D.1 Dataset Details
Synthetic Dataset Description Following [5], we construct the

synthetic data containing the gender 𝐴 ∈ {0, 1}, qualification 𝑄 ,
number of children 𝐷 , physical strength 𝑀𝜃 , and hiring decision

outcome𝑌 ∈ {0, 1} following a pre-defined SCM.We first randomly

sample the social network by generating the adjacent matrix 𝐺 :

𝐺𝑖 𝑗 ∼ Bernoulli(0.5). We then generate each feature attribute as

follows:

𝑄 =
⌊
𝑈𝑄

⌋
, 𝑄 ∈ R𝑛 𝑈𝑄 ∼ N

(
2, 52

)
,

𝐷 = 𝐴 + ⌊0.5𝑄𝑈𝐷 ⌋ , 𝐷 ∈ R𝑛 ,𝑈𝐷 ∼ TrN
(
2, 12, 0.1, 3.0

)
,

𝑀 = 3𝐴 + 0.4𝑄𝑈𝑀 , 𝑀 ∈ R𝑛, 𝑈𝑀 ∼ TrN
(
3, 22, 0.1, 3.0

)
,

𝐴 ∼ Bernoulli

(
expit(𝐺𝑇𝑄 − 40)

)
, 𝐴 ∈ R𝑛,

(9)

where expit refers to the sigmoid function. We then perform ex-

posure mapping for 𝐴N𝑖
for each 𝑖𝑛[𝑛] and thus the mapping of

𝐴:

𝐴̃𝑖 = I(𝐺𝑇𝐴 > 0.5 ∗mean(𝐺𝑇𝐴)),

where mean refers to the mean-value of the vector 𝐺𝑇𝐴, and I
refers to the indicator function. Intuitively, our exposure mapping

here implies that 𝐴̃𝑖 = 1 if the number of positive neighbors of 𝑖 is

larger than the mean level of the overall population. Furthermore,

we generated hashed 𝐴 from 𝐴̃𝑖 and 𝐴𝑖 :

𝐴ℎ𝑎𝑠ℎ =


0, if 𝐴̃𝑖 = 0&𝐴 = 1

1, if 𝐴̃𝑖 = 1&𝐴 = 0 or 𝐴̃𝑖 = 0&𝐴 = 1

2, if 𝐴̃𝑖 = 1&𝐴 = 1

(10)

Hence, 𝑌 are generated as follows:

𝑌 ∼ Bernoulli(expit(−20 + 10𝐴ℎ𝑎𝑠ℎ + 0.1 ∗ (𝐺𝑇𝑄 +𝐺𝑇𝐷 +𝐺𝑇𝑀)))
NBAdatasetThis is extended from a Kaggle dataset 1 containing

around 400 NBA basketball players. The performance statistics of

players in the 2016-2017 season and other various information e.g.,

nationality, age, and salary are provided. The social network is

constructed by collecting the relationships of the NBA basketball

players on Twitter with its official crawling API 2. The sensitive, i.e.,

the nationality, is binarized into two categories, i.e., U.S. players and

overseas players. The classification, in task is to predict whether

the salary of the player is over the median [7].

Credit Default Dataset Credit Default Dataset is comprised

of 30,000 nodes, where each node represents individuals who are

utilizing some form of credit. Each node contains 13 attributes.

Individuals are connected by their spending and payment behavior.

The classification task is to determine whether an individual will

default on the credit card payment. Age is used as the sensitive

attribute [1].

D.2 Implementation Details

To unify backbone embedding model across all baselines, we

set the GNN model with three GCN layers throughout our exper-

iments (except for the GAT baseline). The activation function is

the relu function, and the optimizer is set as the Adam optimizer

with initial learning rate 0.001 and weight_decay as 5𝑒 − 4. The

training epoch for all baselines is set to 300. We run experiments

on all baselines using the open-source project, i.e., the pygdebias

package in https://github.com/yushundong/PyGDebias. For the

NIFTY [1], we set the penalty parameter as 0.6 following original

implementations. For fairGNN method [7], we set 𝛼 = 100 and

𝛽 = 1 following their optimal setting. For CrossWalk in [17], the

random walk length is set to 𝑑 = 5, and the number of walks is

set to 𝑟 = 500, and their 𝛼 = 0.5 and 𝑝 = 2. For InfoRM_GNN

in [16], we set 𝛼 = 10 and 𝜂 across all datasets by combining

their original suggestions and our cross-fold validation results. For

GEAR [21], we follow their original parameter setting, which states

that 𝜆 = 0.6,𝐶 = 2, 𝜆𝑠 = 0.4, 𝛽 = 10, 𝜇 = 1𝑒 − 5, 𝑘 = 20, 𝐵 = 4. For

our IAF+DR method, we map 𝐴̃ and 𝐴 to a scalar value by simply

operations as𝐴ℎ𝑎𝑠ℎ = 𝐴̃+2∗𝐴, as we hold the belief that individuals
with low 𝐴 and low 𝐴̃ will receives the worst decisions, individuals

with high 𝐴 and high 𝐴̃ will receive best decisions, and individuals

with low𝐴 and high 𝐴̃ or high𝐴 but low 𝐴̃will lie between. Besides,

we set 𝛼 = 1 with 𝜖 = 0.1 throughout our experiments.
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